Skip to contents

This function allows for regularization of models built in lavaan with the smoothed lasso penalty. The returned object is an S4 class; its elements can be accessed with the "@" operator (see examples). We don't recommend using this function. Use lasso() instead.

Usage

smoothLasso(
  lavaanModel,
  regularized,
  lambdas,
  epsilon,
  tau,
  modifyModel = lessSEM::modifyModel(),
  control = lessSEM::controlBFGS()
)

Arguments

lavaanModel

model of class lavaan

regularized

vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object

lambdas

numeric vector: values for the tuning parameter lambda

epsilon

epsilon > 0; controls the smoothness of the approximation. Larger values = smoother

tau

parameters below threshold tau will be seen as zeroed

modifyModel

used to modify the lavaanModel. See ?modifyModel.

control

used to control the optimizer. This element is generated with the controlBFGS function. See ?controlBFGS for more details.

Value

Model of class regularizedSEM

Details

For more details, see:

  1. Lee, S.-I., Lee, H., Abbeel, P., & Ng, A. Y. (2006). Efficient L1 Regularized Logistic Regression. Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06), 401–408.

  2. Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566. https://doi.org/10.1080/10705511.2016.1154793

Examples

library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
     l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
     l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
                           data = dataset,
                           meanstructure = TRUE,
                           std.lv = TRUE)

# Regularization:

lsem <- smoothLasso(
  # pass the fitted lavaan model
  lavaanModel = lavaanModel,
  # names of the regularized parameters:
  regularized = paste0("l", 6:15),
  epsilon = 1e-10,
  tau = 1e-4,
  lambdas = seq(0,1,length.out = 50))

# use the plot-function to plot the regularized parameters:
plot(lsem)

# the coefficients can be accessed with:
coef(lsem)

# elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

# AIC and BIC:
AIC(lsem)
BIC(lsem)

# The best parameters can also be extracted with:
coef(lsem, criterion = "AIC")
coef(lsem, criterion = "BIC")