The-Structural-Equation-Model
Source:vignettes/The-Structural-Equation-Model.Rmd
The-Structural-Equation-Model.Rmd
The lessSEM package comes with a custom implementation of structural equation models (SEM). This implementation supports full-information-maximum-likelihood computation in case of missing data and could also be used by other packages. Identical to regsem lessSEM also builds on lavaan to set up the model. That is, if you are already familiar with lavaan, setting up models with lessSEM should be relatively easy.
We will use the political democracy example from the sem documentation of lavaan in the following:
library(lavaan)
# see ?lavaan::sem
model <- '
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
'
lavaanModel <- sem(model, data = PoliticalDemocracy)
From lavaan to lessSEM
To translate the model from lavaan to lessSEM, we have to use the
lessSEM:::.SEMFromLavaan
function. Importantly, this
function is not exported by lessSEM. That is, you must use the
three colons as shown above to access this function!
library(lessSEM)
# won't work:
mySEM <- .SEMFromLavaan(lavaanModel = lavaanModel)
# will work:
mySEM <- lessSEM:::.SEMFromLavaan(lavaanModel = lavaanModel)
show(mySEM)
#> Internal C++ model representation of lessSEM
#> Parameters:
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.1796566 1.8182100 1.1907820 1.1745407 1.2509789 1.4713302
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.6004746 0.8650430 0.5825389 1.4402477 2.1829448 0.7115901
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.3627964 1.3717741 0.0813878 0.1204271 0.4666596 1.8546417
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 7.5813926 4.9556766 3.2245521 2.3130404 4.9681408 3.5600367
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 3.3076854 0.4485989 3.8753039 0.1644633 5.0543838 4.7921946
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.5576898 5.4646667 4.2564429 6.5631103 4.4525330 5.1362519
#> y6~1 y7~1 y8~1
#> 2.9780741 6.1962639 4.0433897
#>
#> Objective value: 3097.6361581071
The lessSEM:::.SEMFromLavaan
function comes with some
additional arguments to fine tune the initialization of the model.
-
whichPars
: with thewhichPars
arguments, we can change which parameters are used in the mySEM created above. By default, we will use the estimates (whichPars = "est"
) of the lavaan model, but we could also use the starting values (whichPars = "start"
) or supply custom parameter values -
fit
: Whenfit = TRUE
, lessSEM will fit the model once and compare the fitting function value to that of the lavaanModel. If you supplied parameters other than “est”, this should be set tofit = FALSE
-
addMeans
: Should a mean structure be added? It is currenlty recomended to set this toTRUE
-
activeSet
: This allows for only using part of the data set. This can be useful for cross-validation. -
dataSet
: This allows for passing a different data set to mySEM. This can be useful for cross-validation.
In most cases, we recommend setting up the model as shown above, with none of the additional arguments being used.
Working with the Rcpp_SEMCpp class
The mySEM object is implemented in C++ to make everything run faster.
The underlying class is Rcpp_SEMCpp
and was created using
the wonderful Rcpp and RcppArmadillo
packages.
class(mySEM)
#> [1] "Rcpp_SEMCpp"
#> attr(,"package")
#> [1] "lessSEM"
You can access its elements using the dollar-operator:
mySEM$A
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] 0.0000000 0.000000 0.000000 0 0 0 0 0 0 0 0
#> [2,] 1.4713302 0.000000 0.000000 0 0 0 0 0 0 0 0
#> [3,] 0.6004746 0.865043 0.000000 0 0 0 0 0 0 0 0
#> [4,] 1.0000000 0.000000 0.000000 0 0 0 0 0 0 0 0
#> [5,] 2.1796566 0.000000 0.000000 0 0 0 0 0 0 0 0
#> [6,] 1.8182100 0.000000 0.000000 0 0 0 0 0 0 0 0
#> [7,] 0.0000000 1.000000 0.000000 0 0 0 0 0 0 0 0
#> [8,] 0.0000000 1.190782 0.000000 0 0 0 0 0 0 0 0
#> [9,] 0.0000000 1.174541 0.000000 0 0 0 0 0 0 0 0
#> [10,] 0.0000000 1.250979 0.000000 0 0 0 0 0 0 0 0
#> [11,] 0.0000000 0.000000 1.000000 0 0 0 0 0 0 0 0
#> [12,] 0.0000000 0.000000 1.190782 0 0 0 0 0 0 0 0
#> [13,] 0.0000000 0.000000 1.174541 0 0 0 0 0 0 0 0
#> [14,] 0.0000000 0.000000 1.250979 0 0 0 0 0 0 0 0
#> [,12] [,13] [,14]
#> [1,] 0 0 0
#> [2,] 0 0 0
#> [3,] 0 0 0
#> [4,] 0 0 0
#> [5,] 0 0 0
#> [6,] 0 0 0
#> [7,] 0 0 0
#> [8,] 0 0 0
#> [9,] 0 0 0
#> [10,] 0 0 0
#> [11,] 0 0 0
#> [12,] 0 0 0
#> [13,] 0 0 0
#> [14,] 0 0 0
Note that, identical to regsem, the model is implemented with the RAM notation (McArdle & McDonald, 1984). If you are not familiar with this notation, Fox (2006) provides a short introduction. However, you won’t need to know the details for the time being. Instead, we will focus on how to get and set the parameters, fit the model, get its gradients, etc.
Accessing the Parameters
The parameters of the model can be accessed with the
lessSEM:::.getParameters
function:
(myParameters <- lessSEM:::.getParameters(mySEM))
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.1796566 1.8182100 1.1907820 1.1745407 1.2509789 1.4713302
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.6004746 0.8650430 0.5825389 1.4402477 2.1829448 0.7115901
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.3627964 1.3717741 0.0813878 0.1204271 0.4666596 1.8546417
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 7.5813926 4.9556766 3.2245521 2.3130404 4.9681408 3.5600367
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 3.3076854 0.4485989 3.8753039 0.1644633 5.0543838 4.7921946
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.5576898 5.4646667 4.2564429 6.5631103 4.4525330 5.1362519
#> y6~1 y7~1 y8~1
#> 2.9780741 6.1962639 4.0433897
The naming is identical to that of the lavaanModel. By default, the
parameters are returned in the transformed format. This requires some
more explanation: In lessSEM we assume that negative variances are
outside of the parameter space. That is, negative variances are
not allowed (this is different from lavaan!). To ensure
that all variances are positive, we use a transformation: Say we are
interested in the variance ind60~~ind60
. Internally, there
is a parameter called x1~~x1
and this parameter has a
rawValue
and a transformed value (called just
value
). We can access these values with:
mySEM$getParameters()
#> label value rawValue location isTransformation
#> 1 ind60=~x2 2.1796566 2.1796566 Amatrix FALSE
#> 2 ind60=~x3 1.8182100 1.8182100 Amatrix FALSE
#> 3 a 1.1907820 1.1907820 Amatrix FALSE
#> 4 b 1.1745407 1.1745407 Amatrix FALSE
#> 5 c 1.2509789 1.2509789 Amatrix FALSE
#> 6 dem60~ind60 1.4713302 1.4713302 Amatrix FALSE
#> 7 dem65~ind60 0.6004746 0.6004746 Amatrix FALSE
#> 8 dem65~dem60 0.8650430 0.8650430 Amatrix FALSE
#> 9 y1~~y5 0.5825389 0.5825389 Smatrix FALSE
#> 10 y2~~y4 1.4402477 1.4402477 Smatrix FALSE
#> 11 y2~~y6 2.1829448 2.1829448 Smatrix FALSE
#> 12 y3~~y7 0.7115901 0.7115901 Smatrix FALSE
#> 13 y4~~y8 0.3627964 0.3627964 Smatrix FALSE
#> 14 y6~~y8 1.3717741 1.3717741 Smatrix FALSE
#> 15 x1~~x1 0.0813878 -2.5085299 Smatrix FALSE
#> 16 x2~~x2 0.1204271 -2.1167106 Smatrix FALSE
#> 17 x3~~x3 0.4666596 -0.7621551 Smatrix FALSE
#> 18 y1~~y1 1.8546417 0.6176915 Smatrix FALSE
#> 19 y2~~y2 7.5813926 2.0256969 Smatrix FALSE
#> 20 y3~~y3 4.9556766 1.6005337 Smatrix FALSE
#> 21 y4~~y4 3.2245521 1.1707941 Smatrix FALSE
#> 22 y5~~y5 2.3130404 0.8385629 Smatrix FALSE
#> 23 y6~~y6 4.9681408 1.6030457 Smatrix FALSE
#> 24 y7~~y7 3.5600367 1.2697708 Smatrix FALSE
#> 25 y8~~y8 3.3076854 1.1962487 Smatrix FALSE
#> 26 ind60~~ind60 0.4485989 -0.8016262 Smatrix FALSE
#> 27 dem60~~dem60 3.8753039 1.3546241 Smatrix FALSE
#> 28 dem65~~dem65 0.1644633 -1.8050678 Smatrix FALSE
#> 29 x1~1 5.0543838 5.0543838 Mvector FALSE
#> 30 x2~1 4.7921946 4.7921946 Mvector FALSE
#> 31 x3~1 3.5576898 3.5576898 Mvector FALSE
#> 32 y1~1 5.4646667 5.4646667 Mvector FALSE
#> 33 y2~1 4.2564429 4.2564429 Mvector FALSE
#> 34 y3~1 6.5631103 6.5631103 Mvector FALSE
#> 35 y4~1 4.4525330 4.4525330 Mvector FALSE
#> 36 y5~1 5.1362519 5.1362519 Mvector FALSE
#> 37 y6~1 2.9780741 2.9780741 Mvector FALSE
#> 38 y7~1 6.1962639 6.1962639 Mvector FALSE
#> 39 y8~1 4.0433897 4.0433897 Mvector FALSE
For all parameters which are not variances, the
rawValue
will be identical to the value
. For
variances, the rawValue
can be any real value. The
value
itself is then computed as \(e^{\text{rawValue}}\); this ensures that
the value
is always positive. You can access the raw values
as follows:
lessSEM:::.getParameters(mySEM, raw = TRUE)
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.1796566 1.8182100 1.1907820 1.1745407 1.2509789 1.4713302
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.6004746 0.8650430 0.5825389 1.4402477 2.1829448 0.7115901
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.3627964 1.3717741 -2.5085299 -2.1167106 -0.7621551 0.6176915
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 2.0256969 1.6005337 1.1707941 0.8385629 1.6030457 1.2697708
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 1.1962487 -0.8016262 1.3546241 -1.8050678 5.0543838 4.7921946
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.5576898 5.4646667 4.2564429 6.5631103 4.4525330 5.1362519
#> y6~1 y7~1 y8~1
#> 2.9780741 6.1962639 4.0433897
Note that the raw value for ind60~~ind60
is negative
while the transformed value is positive.
Changing the Parameters
Being able to change the parameters is essential for fitting a model.
In lessSEM, this is facilitated by the
lessSEM:::.setParameters
function:
# first, let's change one of the parameters:
myParameters["a"] <- 1
# now, let's change the parameters of the model
mySEM <- lessSEM:::.setParameters(SEM = mySEM, # the model
labels = names(myParameters), # names of the parameters
values = myParameters, # values of the parameters
raw = FALSE)
Note that we had to specify if the parameters in
myParameters
are given in raw format. Here, we already used
the transformed parameters, so we set raw = FALSE
. Using
the raw parameters instead would look as follows:
myParameters <- lessSEM:::.getParameters(mySEM, raw = TRUE)
# first, let's change one of the parameters:
myParameters["a"] <- 1
# now, let's change the parameters of the model
mySEM <- lessSEM:::.setParameters(SEM = mySEM, # the model
labels = names(myParameters), # names of the parameters
values = myParameters, # values of the parameters
raw = TRUE)
Let’s check the parameters:
lessSEM:::.getParameters(mySEM)
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.1796566 1.8182100 1.0000000 1.1745407 1.2509789 1.4713302
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.6004746 0.8650430 0.5825389 1.4402477 2.1829448 0.7115901
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.3627964 1.3717741 0.0813878 0.1204271 0.4666596 1.8546417
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 7.5813926 4.9556766 3.2245521 2.3130404 4.9681408 3.5600367
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 3.3076854 0.4485989 3.8753039 0.1644633 5.0543838 4.7921946
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.5576898 5.4646667 4.2564429 6.5631103 4.4525330 5.1362519
#> y6~1 y7~1 y8~1
#> 2.9780741 6.1962639 4.0433897
Note that a
now has the value 1
.
Fitting the model
To compute the -2-log-likelihood of the model, we use the
lessSEM:::.fit
function:
mySEM <- lessSEM:::.fit(SEM = mySEM)
The -2-log-likelihood can be accessed with:
mySEM$objectiveValue
#> [1] 3100.741
Computing the gradients
To compute the gradients, use the
lessSEM:::.getGradients
function. Gradients can be computed
for the transformed parameters
lessSEM:::.getGradients(mySEM, raw = FALSE)
#> ind60=~x2 ind60=~x3 a b c
#> 0.361097622 0.105564095 -32.837359814 2.453232158 17.076222049
#> dem60~ind60 dem65~ind60 dem65~dem60 y1~~y5 y2~~y4
#> -0.450648533 -1.078272542 -5.357920036 0.004650747 -0.157923486
#> y2~~y6 y3~~y7 y4~~y8 y6~~y8 x1~~x1
#> -0.567076177 0.161163293 0.266869495 -0.271533827 0.230054158
#> x2~~x2 x3~~x3 y1~~y1 y2~~y2 y3~~y3
#> 0.306685898 -0.093753843 -0.015516535 -0.343353554 0.099359383
#> y4~~y4 y5~~y5 y6~~y6 y7~~y7 y8~~y8
#> 0.137753880 0.131454473 -0.330083693 0.073331567 0.148964628
#> ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> -0.103960291 -0.252921392 -1.955349241 0.000000000 0.000000000
#> x3~1 y1~1 y2~1 y3~1 y4~1
#> 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
#> y5~1 y6~1 y7~1 y8~1
#> 0.000000000 0.000000000 0.000000000 0.000000000
or for the raw parameters
lessSEM:::.getGradients(mySEM, raw = TRUE)
#> ind60=~x2 ind60=~x3 a b c
#> 0.361097622 0.105564095 -32.837359814 2.453232158 17.076222049
#> dem60~ind60 dem65~ind60 dem65~dem60 y1~~y5 y2~~y4
#> -0.450648533 -1.078272542 -5.357920036 0.004650747 -0.157923486
#> y2~~y6 y3~~y7 y4~~y8 y6~~y8 x1~~x1
#> -0.567076177 0.161163293 0.266869495 -0.271533827 0.018723602
#> x2~~x2 x3~~x3 y1~~y1 y2~~y2 y3~~y3
#> 0.036933297 -0.043751134 -0.028777612 -2.603098086 0.492392971
#> y4~~y4 y5~~y5 y6~~y6 y7~~y7 y8~~y8
#> 0.444194569 0.304059508 -1.639902248 0.261063066 0.492728130
#> ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> -0.046636468 -0.980147244 -0.321583201 0.000000000 0.000000000
#> x3~1 y1~1 y2~1 y3~1 y4~1
#> 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
#> y5~1 y6~1 y7~1 y8~1
#> 0.000000000 0.000000000 0.000000000 0.000000000
Computing the Hessian
To compute the Hessian, use the lessSEM:::.getHessian
function. The Hessian can be computed for the transformed parameters
lessSEM:::.getHessian(mySEM, raw = FALSE)
or for the raw parameters
lessSEM:::.getHessian(mySEM, raw = TRUE)
Computing the Scores
To compute the scores (derivative of the -2-log-likelihood for each
person), use the lessSEM:::.getScores
function. The scores
can be computed for the transformed parameters
lessSEM:::.getScores(mySEM, raw = FALSE)
or for the raw parameters
lessSEM:::.getScores(mySEM, raw = TRUE)
Using lessSEM with general purpose optimizers
The most important part about the whole SEM implementation mentioned above is that we can use it flexibly with different optimizers. For instance, we may want to try out the BFGS optimizer from optim.
Important: We highly recommend that you use the raw parameters for any optimization. Using the non-raw parameters can cause errors and unnecessary headaches!
Let’s have a look at the optim
function:
args(optim)
#> function (par, fn, gr = NULL, ..., method = c("Nelder-Mead",
#> "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), lower = -Inf,
#> upper = Inf, control = list(), hessian = FALSE)
#> NULL
Note that the function requires a par
argument - the
parameter estimates - a fn
argument - the fitting function
- and also allows for the gradients to be passed to the function using
the gr
argument. We could build such functions based on the
lessSEM:::.fit
and lessSEM:::.getGradients
functions shown above, however for convenience such wrappers are already
implemented in lessSEM. The fitting function is called with
lessSEM:::.fitFunction
and the gradient function is called
lessSEM:::.gradientFunction
. Both expect a vector with
parameters, a SEM, and an argument specifying if the parameters are in
raw format.
We can use this in optim as follows:
# let's get the starting values:
par <- lessSEM:::.getParameters(mySEM, raw = TRUE) # important: Use raw = TRUE!
print(par)
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.1796566 1.8182100 1.0000000 1.1745407 1.2509789 1.4713302
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.6004746 0.8650430 0.5825389 1.4402477 2.1829448 0.7115901
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.3627964 1.3717741 -2.5085299 -2.1167106 -0.7621551 0.6176915
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 2.0256969 1.6005337 1.1707941 0.8385629 1.6030457 1.2697708
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 1.1962487 -0.8016262 1.3546241 -1.8050678 5.0543838 4.7921946
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.5576898 5.4646667 4.2564429 6.5631103 4.4525330 5.1362519
#> y6~1 y7~1 y8~1
#> 2.9780741 6.1962639 4.0433897
opt <- optim(par = par,
fn = lessSEM:::.fitFunction, # use the fitting function wrapper
gr = lessSEM:::.gradientFunction, # use the gradient function wrapper
SEM = mySEM, # use the SEM we created above
raw = TRUE, # make sure to tell the functions that we are using raw parameters
method = "BFGS" # use the BFGS optimizer
)
print(opt$par)
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.1791276 1.8180458 1.1909397 1.1740909 1.2511328 1.4725867
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.6007137 0.8649836 0.5817910 1.4336940 2.1828828 0.7229781
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.3605874 1.3774602 -2.5093044 -2.1126718 -0.7633056 0.6178333
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 2.0246995 1.6022529 1.1690474 0.8385775 1.6039528 1.2711405
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 1.1971146 -0.8013687 1.3542390 -1.8057174 5.0543838 4.7921946
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.5576898 5.4646667 4.2564429 6.5631103 4.4525330 5.1362519
#> y6~1 y7~1 y8~1
#> 2.9780741 6.1962639 4.0433897
Note that the parameter a
is now back at the maximum
likelihood estimate from before. However, all parameters are still in
raw format. To get the transformed parameters, let’s take one more
step:
mySEM <- lessSEM:::.setParameters(SEM = mySEM, # the model
labels = names(opt$par), # names of the parameters
values = opt$par, # values of the parameters
raw = TRUE)
print(lessSEM:::.getParameters(mySEM, raw = FALSE))
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 2.17912764 1.81804575 1.19093968 1.17409087 1.25113276 1.47258673
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.60071368 0.86498364 0.58179103 1.43369401 2.18288278 0.72297808
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.36058737 1.37746019 0.08132479 0.12091448 0.46612308 1.85490471
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 7.57383439 4.96420359 3.21892497 2.31307420 4.97264951 3.56491599
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 3.31055101 0.44871438 3.87381195 0.16435650 5.05438384 4.79219463
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 3.55768979 5.46466667 4.25644288 6.56311025 4.45253304 5.13625192
#> y6~1 y7~1 y8~1
#> 2.97807408 6.19626389 4.04338968
Compare those to the parameter estimates from lavaan:
coef(lavaanModel)
#> ind60=~x2 ind60=~x3 a b c a
#> 2.180 1.818 1.191 1.175 1.251 1.191
#> b c dem60~ind60 dem65~ind60 dem65~dem60 y1~~y5
#> 1.175 1.251 1.471 0.600 0.865 0.583
#> y2~~y4 y2~~y6 y3~~y7 y4~~y8 y6~~y8 x1~~x1
#> 1.440 2.183 0.712 0.363 1.372 0.081
#> x2~~x2 x3~~x3 y1~~y1 y2~~y2 y3~~y3 y4~~y4
#> 0.120 0.467 1.855 7.581 4.956 3.225
#> y5~~y5 y6~~y6 y7~~y7 y8~~y8 ind60~~ind60 dem60~~dem60
#> 2.313 4.968 3.560 3.308 0.449 3.875
#> dem65~~dem65
#> 0.164
Finally, we can compute the standard errors:
lessSEM:::.standardErrors(SEM = mySEM, raw = FALSE)
#> ind60=~x2 ind60=~x3 a b c dem60~ind60
#> 0.13885220 0.15204330 0.14166120 0.11987057 0.12295637 0.39139696
#> dem65~ind60 dem65~dem60 y1~~y5 y2~~y4 y2~~y6 y3~~y7
#> 0.23828913 0.07567860 0.36462028 0.68977248 0.73096921 0.62119518
#> y4~~y8 y6~~y8 x1~~x1 x2~~x2 x3~~x3 y1~~y1
#> 0.46062833 0.57969391 0.01968652 0.06991196 0.08897395 0.45717113
#> y2~~y2 y3~~y3 y4~~y4 y5~~y5 y6~~y6 y7~~y7
#> 1.34332169 0.96373267 0.74092220 0.48364101 0.89600780 0.73922564
#> y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 x1~1 x2~1
#> 0.71425332 0.08675480 0.88802933 0.23331748 0.08406657 0.17326967
#> x3~1 y1~1 y2~1 y3~1 y4~1 y5~1
#> 0.16121433 0.29892606 0.43891242 0.39404806 0.37957637 0.30446534
#> y6~1 y7~1 y8~1
#> 0.39247640 0.36442149 0.37545879
Let’s compare this to lavaan again:
parameterEstimates(lavaanModel)[,1:6]
#> lhs op rhs label est se
#> 1 ind60 =~ x1 1.000 0.000
#> 2 ind60 =~ x2 2.180 0.138
#> 3 ind60 =~ x3 1.818 0.152
#> 4 dem60 =~ y1 1.000 0.000
#> 5 dem60 =~ y2 a 1.191 0.139
#> 6 dem60 =~ y3 b 1.175 0.120
#> 7 dem60 =~ y4 c 1.251 0.117
#> 8 dem65 =~ y5 1.000 0.000
#> 9 dem65 =~ y6 a 1.191 0.139
#> 10 dem65 =~ y7 b 1.175 0.120
#> 11 dem65 =~ y8 c 1.251 0.117
#> 12 dem60 ~ ind60 1.471 0.392
#> 13 dem65 ~ ind60 0.600 0.226
#> 14 dem65 ~ dem60 0.865 0.075
#> 15 y1 ~~ y5 0.583 0.356
#> 16 y2 ~~ y4 1.440 0.689
#> 17 y2 ~~ y6 2.183 0.737
#> 18 y3 ~~ y7 0.712 0.611
#> 19 y4 ~~ y8 0.363 0.444
#> 20 y6 ~~ y8 1.372 0.577
#> 21 x1 ~~ x1 0.081 0.019
#> 22 x2 ~~ x2 0.120 0.070
#> 23 x3 ~~ x3 0.467 0.090
#> 24 y1 ~~ y1 1.855 0.433
#> 25 y2 ~~ y2 7.581 1.366
#> 26 y3 ~~ y3 4.956 0.956
#> 27 y4 ~~ y4 3.225 0.723
#> 28 y5 ~~ y5 2.313 0.479
#> 29 y6 ~~ y6 4.968 0.921
#> 30 y7 ~~ y7 3.560 0.710
#> 31 y8 ~~ y8 3.308 0.704
#> 32 ind60 ~~ ind60 0.449 0.087
#> 33 dem60 ~~ dem60 3.875 0.866
#> 34 dem65 ~~ dem65 0.164 0.227
References
- Fox, J. (2006). Teacher’s corner: Structural equation modeling with the sem package in R. Structural Equation Modeling: A Multidisciplinary Journal, 13(3), 465–486. https://doi.org/10.1207/s15328007sem1303_7
- McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37(2), 234–251. https://doi.org/10.1111/j.2044-8317.1984.tb00802.x