Creates a lavaan model object from lessSEM (only if possible). Pass either a criterion or a combination of lambda, alpha, and theta.
Arguments
- regularizedSEM
object created with lessSEM
- criterion
criterion used for model selection. Currently supported are "AIC" or "BIC"
- lambda
value for tuning parameter lambda
- alpha
value for tuning parameter alpha
- theta
value for tuning parameter theta
Examples
library(lessSEM)
# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
dataset <- simulateExampleData()
lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"
lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)
# Regularization:
regularized <- lasso(lavaanModel,
regularized = paste0("l", 11:15),
lambdas = seq(0,1,.1))
# using criterion
lessSEM2Lavaan(regularizedSEM = regularized,
criterion = "AIC")
# using tuning parameters (note: we only have to specify the tuning
# parameters that are actually used by the penalty function. In case
# of lasso, this is lambda):
lessSEM2Lavaan(regularizedSEM = regularized,
lambda = 1)