Implements scad regularization for structural equation models. The penalty function is given by: $$p( x_j) = \begin{cases} \lambda |x_j| & \text{if } |x_j| \leq \theta\\ \frac{-x_j^2 + 2\theta\lambda |x_j| - \lambda^2}{2(\theta -1)} & \text{if } \lambda < |x_j| \leq \lambda\theta \\ (\theta + 1) \lambda^2/2 & \text{if } |x_j| \geq \theta\lambda\\ \end{cases}$$ where \(\theta > 2\).
Arguments
- mixedPenalty
model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty)
- regularized
vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
- lambdas
numeric vector: values for the tuning parameter lambda
- thetas
parameters whose absolute value is above this threshold will be penalized with a constant (theta)
Details
Identical to regsem, models are specified using lavaan. Currently,
most standard SEM are supported. lessSEM also provides full information
maximum likelihood for missing data. To use this functionality,
fit your lavaan model with the argument sem(..., missing = 'ml')
.
lessSEM will then automatically switch to full information maximum likelihood
as well.
scad regularization:
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360. https://doi.org/10.1198/016214501753382273
Regularized SEM
Huang, P.-H., Chen, H., & Weng, L.-J. (2017). A Penalized Likelihood Method for Structural Equation Modeling. Psychometrika, 82(2), 329–354. https://doi.org/10.1007/s11336-017-9566-9
Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566. https://doi.org/10.1080/10705511.2016.1154793
For more details on ISTA, see:
Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1), 183–202. https://doi.org/10.1137/080716542
Gong, P., Zhang, C., Lu, Z., Huang, J., & Ye, J. (2013). A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems. Proceedings of the 30th International Conference on Machine Learning, 28(2)(2), 37–45.
Parikh, N., & Boyd, S. (2013). Proximal Algorithms. Foundations and Trends in Optimization, 1(3), 123–231.
Examples
library(lessSEM)
# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
dataset <- simulateExampleData()
lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"
lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)
# We can add mixed penalties as follows:
regularized <- lavaanModel |>
# create template for regularized model with mixed penalty:
mixedPenalty() |>
# add penalty on loadings l6 - l10:
addScad(regularized = paste0("l", 11:15),
lambdas = seq(0,1,.1),
thetas = 3.1) |>
# fit the model:
fit()